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Nonlinear optics at maximum coherence

B y S. E. Harris, G. Y. Yin, M. Jain, H. Xia and A. J. Merriam
Edward L. Ginzton Laboratory, Stanford University,

Stanford, CA 94305, USA

We describe nonlinear optical processes which use maximum coherence of a non-
allowed transition. The nonlinear susceptibility for such processes is of the same
order of magnitude as is the linear susceptibility. This allows frequency converters
and optical parametric oscillators with bandwidths which are on order of their centre
frequency.

1. Introduction

For at least 25 years it has been thought that four-frequency mixing processes are
well understood. Figure 1 shows an example of two such processes: (a) shows a four-
frequency summing process where ωh = (ωp−ωc)+ωl; (b) shows a parametric process
which has exponential gain at the signal and idler frequencies ωs and ωi.

We begin by considering the excitation of the non-allowed |1〉 − |2〉 transition.
With a1 and a2 as the probability amplitudes of states |1〉 and |2〉, and ρ12 as the
off-diagonal matrix element of the |1〉− |2〉 transition, ρ12 is related to the excitation
at frequencies ωp and ωc by

ρ12 = a1a
∗
2 ∼ (±)ΩpΩ∗c exp j[(ωp − ωc)t− (kp − kc)z]. (1.1)

Noting figure 1, Ωp, Ωc, kp and kc are the amplitudes of the Rabi frequencies and
the k vectors at these frequencies. Table 1 shows how the work of the last five years
on electromagnetically induced transparency (EIT) has changed our perspective. In
particular, consider the k vector of the excitation (kp − kc). In the past, a priori,
these k vectors were to be evaluated in the nonlinear optical medium. As a result of
EIT, to an excellent approximation, even with ωp and ωc close to resonance, these k
vectors are as in vacuum, i.e. the refractive index at both frequencies is unity. This
is of great importance for nonlinear optical processes. Now, we may approach the
resonance and use the increased nonlinearity while, at the same time, avoiding the
increased (or decreased) refractive index (Harris et al. 1990).

The remainder of table 1 shows other consequences of EIT. The relative phase of
ρ12 (the minus sign) is particularly important. It is because the |1〉 − |2〉 transition
oscillation is anti-phased with regard to its driving fields that |a3|2 = 0 and, even
when on or near resonance, there is no absorption.

There is also no self-focusing or defocusing as the |1〉−|3〉 transition is approached
(Jain et al. 1995). Because of this, the |1〉−|2〉 transition may be driven much harder
than would otherwise be possible. In particular, we may drive it sufficiently hard
that |ρ12| approaches 0.5. This is the condition of maximum coherence.

When at maximum coherence, the nonlinear susceptibility has only a single non-
resonant denominator and, therefore, is of the same order of magnitude as the linear
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2292 S. E. Harris and others

Figure 1. Energy schematic for (a) frequency converters and (b) optical parametric oscillators
which are pumped by population trapped atoms. The pumping frequencies ωp and ωc are strong
and near resonance. The frequencies ωl and ωh for the frequency converter, and ωs and ωi for the
parametric oscillator are weak. The quantity δω2 is a small (typically less than 1 GHz) detuning
which is used to offset the residual dispersion in the system.

Table 1. 25 years ago and now

25 years ago now

kp − kc in medium as in vacuum
sign + −
|a3|2 finite 0
|ρ12| very small 1

2

susceptibility. As a result, the distance in which the interacting frequencies would
slip in phase by π radians, i.e. the coherence length, is approximately the same
distance in which, in the frequency converter of figure 1a, nominally complete photon
conversion will occur. It is also the distance in which the parametric gain (figure 1b) is
approximately exp(1). This near equality of the nonlinear and linear susceptibilities
often leads to frequency converters and amplifiers with bandwidths which are of
order of their centre frequencies.

In the following sections of this paper we will first review the key ideas of
population trapping and EIT. We then summarize the small signal theory of fre-
quency converters, i.e. ωh = (ωp − ωc) + ωl, and of optical parametric oscillators,
(ωp − ωc) = (ωs + ωi). With Pb vapour as an example, we describe experimental
results for the frequency converter (Jain et al. 1996) and the results of a calculation
for the oscillator (Harris & Jain 1997).

2. Population trapped atoms

Because the population of state |3〉 is zero, the anti-phased atoms described in
the previous section are also termed as population trapped (Arimondo 1996). The
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Figure 2. Energy schematic for EIT in Pb vapour. (a) Bare state picture. Since it couples states
|2〉 and |3〉, the 405 nm laser is termed the coupling laser. Since it is sometimes used to probe the
absorption which is caused by ground state atoms, the laser at 283 nm, with angular frequency
ωp, is called the probe laser. (b) Dressed state picture. The frequency of the 283 nm probe beam
is equidistant from the dressed states. Because of quantum interference, even when the decay
rate of state |3〉 is large compared to the Rabi frequency of the coupling laser, both the real and
imaginary parts of the linear susceptibility are zero.

reader may wonder why we describe the frequency converter or optical parametric
oscillator as pumped by these atoms instead of, as is usually done, by the other
electromagnetic fields. The reason is that the EIT process which creates the anti-
phased atoms involves the time history of the pumping fields at ωp and ωc.

There are two ways to establish the ensemble of anti-phased driving atoms. The
first was demonstrated by Alzetta and co-workers in 1976 (Alzetta et al. 1976).
In that work, states |1〉 and |2〉 were hyperfine ground states of Na which, before
the lasers were applied, had roughly equal populations. In this case, the population
trapped state results from an optical pumping process and occurs on a time scale of
many optical decay times.

The experiments described here require pulsed lasers with pulse lengths which are
usually less than 100 ns. Here, as in in experiments of Boller et al. (1991) and Field
et al. (1991), the population trapped state is created by quantum interference. For
a single atom, when on resonance, this occurs on a time scale of the inverse Rabi
frequency (1/Ωc). With both frequencies detuned from state |3〉 by ∆ω, the time
scale for establishing EIT by interference is ∆ω/Ω2 (Harris 1994a).

3. EIT

Propagation phenomena and, in particular, group velocity delay play an important
role in establishing EIT. First consider the case (figure 2) where only a strong field
at ωc is present. This creates the equivalent (dressed) atom shown on the right-hand
side of this figure. As shown here, a weak probe beam when tuned to the frequency
of the bare |1〉 − |2〉 transition is spanned symmetrically by the dressed states. The
contributions of these states to the dielectric constant at ωp interfere so that, in
the ideal case of no dephasing on the |1〉 − |2〉 transition, the loss and refractive
index of the probe beam are zero and unity. But at this same frequency, the medium
has a steep, nearly linear, dispersion and a slow group velocity (Harris et al. 1992).
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Figure 3. (a) Imaginary and (b) real parts of the susceptibility of a probe frequency ωp in
the presence of a strong-coupling field ωc. The dotted curve of (a) is the imaginary part of the
susceptibility in the absence of the coupling field. The steep slope versus frequency of the real part
of the susceptibility results in the slow group velocity which is characteristic of the preparation
phase of EIT. The quantity Γ3 is the radiative decay rate of state |3〉. The susceptibilities are
normalized so that the integral of the imaginary part is unity.

Figure 3 shows the characteristic shapes of the real and imaginary parts of the linear
susceptibility at ωp. It is the slow group velocity which, as described below, leads to
a basic energy requirement for EIT.

Perhaps the simplest case to consider occurs when the complex temporal envelopes
of the fields at ωp and ωc are the same, but the magnitudes and absolute phases are
arbitrary. Such pulses, which are termed as ‘matched’, are the normal modes of
EIT (Harris 1993, 1994b). If they are applied to a medium which initially has all
of its atoms in the ground state, then one need not do anything special to attain
transparency. As the pulses propagate into the medium, the front edge of the probe
pulse is delayed with regard to the coupling laser pulse. This allows the quantum
interference and transparency to occur. The overall medium becomes transparent
in about a group delay time. This delay is proportional to the atom density length
product and may be quite long. For example, Kasapi and co-workers have observed
a delay of about 60 ns in a 10 cm cell length (Kasapi et al. 1995). This corresponds
to a group velocity Vg such that c/Vg is about 160.

It is of importance that the product of the group delay time and the power density
of the coupling laser is, to within a small shape factor, nearly constant. For a weak
probe beam and a time-invariant coupling laser, the product of the group velocity
delay and the photon density of the coupling laser is equal to the oscillator strength
weighted number of atoms in the laser path, i.e. if TD is the group delay and Pc/A
is the power density of the coupling laser at z = 0, then

TD =
(

1
VG
− 1
c

)
L,

1
~ωc

(
Pc

A

)
TD =

f13

f23
NL. (3.1)

This result is, perhaps, the most fundamental requirement for establishing EIT. For
pulses which vary slowly compared to their Rabi frequencies, it applies whether on
or off resonance and irrespective of the ratio of their Rabi frequencies to each other
and to the decay rate Γ3 from state |3〉.

The solid and dashed curves in each part of figure 4 show the probe pulse (in local
time) at the start and end of a medium (Harris & Luo 1995). Irrespective of the ratio
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Figure 4. If one applies matched pulses to an optically thick medium, these pulses will
self-consistently establish the population-trapped state and, for all time thereafter, will be trans-
mitted without further loss. Both parts of this figure show the pulse at the input (solid line) and
at the output (dotted line) of a medium. In both parts, the atom density length product is the
same. But the decay rates of state |3〉 are different; so that in (a), the loss to a probe if alone is
exp(−5) while, in (b), the loss to a probe if alone is exp(−5000). The output pulse (except for
some oscillation) is roughly the same in both cases. Irrespective of the decay rate of state |3〉,
the front edge of the pulse prepares the medium so as to render itself transparent.

of the decay rate Γ3 to the Rabi frequencies, the pattern is the same. For early times,
the medium is opaque and the probe pulse is absorbed. At a critical time, which is
roughly the same in both figures, the medium rather abruptly becomes transparent.
The upward tick at τ = 11.7 in each figure denotes the time at which the integral of
the coupling laser photons from zero to τ = 11.7 is equal to the number of atoms in
the path of the laser beam.

When one allows for the |1〉 − |2〉 transition linewidth, then there are also con-
straints on the power density and pulse length of the lasers. (1) When on resonance,
the power density of the coupling laser should be sufficiently large that its Rabi
frequency exceeds the |1〉 − |2〉 transition linewidth. When off resonance, the Rabi
frequency is replaced by Ω2

c /∆ω. (2) The requirements on the pulse length at ωp
depend on its magnitude. For a small probe, there is no requirement and, in fact,
the radiation may be incoherent. But if the pulse Rabi frequencies are approximately
equal, then the pulse length at ωp must be short compared to the dephasing time of
the |1〉 − |2〉 transition.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2296 S. E. Harris and others

(a)

(c)

(b)

Figure 5. This figure shows how EIT can be used to eliminate optical self-focusing. (a) Shows
the image of a 3.2 mm aperture as taken with a weak probe beam. (b) Shows what happens
when the intensity of the probe is increased by about 10 000 times. We see that the laser beam
filaments and breaks apart in an uncontrolled manner. In (c), the coupling laser is turned on
and the image of the aperture is nearly restored.

4. Image transmission

To attain the anti-phased atomic population we will tune both lasers to several
cm−1 from the |1〉 − |3〉 transition. As explained below, this is done to allow control
of the phase matching condition. But a probe pulse, if alone, could not propagate
near a resonance at high atom densities. As shown in figure 5b, such a pulse breaks
into an uncontrollable number of filaments. But EIT, just as it eliminates loss on
resonance, eliminates near resonance self-focusing and defocusing (figure 5c). In the
transverse plane of a propagating beam or image, both the amplitude and phase of
the E fields at ωp and ωc vary as a function of radius. But, as part of the preparation
process, the phase and amplitudes of the density matrix elements ρ12 self-adjust so
as to allow transmission (Jain et al. 1995).

5. Earlier work

Before proceeding further, we note earlier work showing the connection between
EIT and nonlinear optics. Harris et al. (1990) noted how EIT allows a destructive
interference in the linear susceptibility while, at the same time, allowing a construc-
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tive interference in the nonlinear susceptibility. This is not obvious: for example,
earlier, Tewari & Agarwal (1986) had shown how a strong field, which is not in the
loop of generating and generated frequencies, may be used to control phase match-
ing in a dense medium. But, in such a system, though still useful, the linear and
nonlinear susceptibilities both interfere destructively and have a zero at the same
frequency.

The constructive versus destructive interference was first demonstrated by Hakuta
and Stoicheff (Hakuta et al. 1991, 1992) in atomic hydrogen and their continuing
experiments show the utility of EIT for the generation of VUV radiation.

In other early and continuing work, Hemmer et al. (1995) have shown the use of
EIT for optical phase conjugation at very low power. Jain et al. (1993) have shown
the increase in efficiency which occurs as Ωc exceeds the |1〉−|2〉 transition linewidth.
Rathe et al. (1993) have described nonlinear index effects involving EIT. Recently,
Schmidt & Imamoglu (1996) have described a new method for EIT enhanced cross-
phase modulation.

There are also overlaps with the now substantial literature on the propagation
dynamics of EIT (Grobe et al. 1994; Fleischhauer & Manka 1996; Cerboneschi &
Arimondo 1995), as well as on lasers without population inversion (Kocharovskaya
& Mandel 1994; Padmabandu et al. 1996), and on near-resonance enhancement of
the refractive index (Scully 1991).

6. Theory

The pumping atoms are characterized by the density matrix elements ρij of the
|1〉 − |2〉 transition. Because the fields at ωp and ωc are strong and near resonance,
and the other fields are weak and also, typically, far from resonance, the ρij are
determined by ωp and ωc. When at maximum coherence, the magnitude of each of
the density matrix elements is 0.5. The phase of ρ12, as a function of distance, may
be controlled by a small detuning from the two-photon (Raman) resonance, and an
expression for this phase variation is given later. In this section, the ρij are to be
treated as known functions of z.

We assume that all of the fields are monochromatic with slowly varying spatial
envelopes. We also assume that the detuning of these fields from the virtual states
which determine the effective susceptibilities are large compared to the linewidths of
these states. These states may then be eliminated and the behaviour of the system
is then characterized by the constants

aq =
1

2~2

∑
j

[ |µ1j |2
(ωj − ω1)− ωq

+
|µ1j |2

(ωj − ω1) + ωq

]
,

dq =
1

2~2

∑
j

[ |µ2j |2
(ωj − ω2)− ωq

+
|µ2j |2

(ωj − ω2) + ωq

]
,

bq =
1

2~2

∑
j

[
µ1jµ2j

(ωj − ω1)− ωq
+

µ1jµ2j

(ωj − ω2) + ωq

]
,

cq = b∗q .


(6.1)

Here, ωj are the energies of the (virtual) states |j〉 and µij are the matrix elements
from states |1〉 and |2〉 to state |j〉 (see figure 1).
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(a ) Frequency converter
In the frequency converter (Jain et al. 1996), we apply a frequency ωl to generate

a frequency ωh (figure 1b)

ωh = (ω2 − ω1) + ωl. (6.2)

The equations for the envelopes of the fields as a function of distance are

∂Eh

∂z
= −jηh~ωhN [(ahρ11 + dhρ22)Eh + bhρ12El],

∂El

∂z
= −jηl~ωlN [(alρ11 + dlρ22)El + chρ

∗
12Eh].

 (6.3)

The quantity N is the atom density, η = (µ/ε0)1/2, and ρij are the density matrix
elements of the |1〉− |2〉 transition. The k vectors, kl and kh, relative to vacuum, and
the coupling constants κh and κl are

kh = ηh~ωhN(ahρ11 + dhρ22), kl = ηl~ωlN(alρ11 + dlρ22),
κh = ηh~ωhNbh|ρ12|, κl = ηl~ωlNch|ρ12|.

}
(6.4)

We write the coherence ρ12 and the k vector mismatch ∆k as

ρ12 = |ρ12| exp−jδkz, ∆k = δk − (kh − kl) (6.5)

and change variable by Ẽh = Eh exp(jkhz) and Ẽl = El exp(jklz). With the boundary
condition Ẽh(0) = 0, the solution of equation (6.3) is

Ẽl(z) = Ẽl(0)(exp j 1
2∆kz)

(
cos sz − j∆k

2s
sin sz

)
,

Ẽh(z) = −j κh

s
Ẽl(0)(exp−j 1

2∆kz) sin sz,

 (6.6)

where

s = (κlκh + 1
4∆k2)1/2.

The frequency converter solution conserves photons between ωl and ωh. With ∆k =
0, a photon conversion efficiency of unity is obtained at a distance z such that√
κlκhz = 1

2π.

(b ) Parametric oscillator
In the parametric oscillator (Harris & Jain 1997), the signal and idler fields are

related by (figure 1b)

ωi = (ω2 − ω1)− ωs (6.7)

and, if either grows with distance, the other must grow. There is parametric gain
and the process may start from either classical or quantum noise.

The coupled equations for the E fields at ωs and ωi are

∂Es

∂z
= −jηs~ωsN [(asρ11 + dsρ22)Es + bsρ12E

∗
i ],

∂Ei

∂z
= −jηi~ωiN [(aiρ11 + diρ22)Ei + csρ12E

∗
s ].

 (6.8)
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Here, the k vectors (relative to vacuum) and coupling constants are

ks = ηs~ωsN(asρ11 + dsρ22), ki = ηi~ωiN(aiρ11 + diρ22),
κs = ηs~ωsNbs|ρ12|, κi = ηi~ωiNb

∗
s |ρ12|

}
(6.9)

and ρ12 and ∆k are defined as

ρ12 = |ρ12| exp−jδkz, ∆k = δk − (ks + ki). (6.10)

With the change of variable Ẽs = Es exp(jksz) and Ẽi = Ei exp(jkiz), and the
boundary condition Ẽi(0) = 0, the solution of equation (6.8) is

Ẽs(z) = Ẽs(0)(exp−j 1
2∆kz)

(
cosh sz + j

∆k
2s

sinh sz
)
,

Ẽ∗i (z) = j
κi

s
Ẽs(0)(exp j 1

2∆kz) sinh sz,

 (6.11)

where
s = (κsκi − 1

4∆k2)1/2.

If ρ12 contains no spatial dependence over and above vacuum, i.e. δk = 0, then,
using the constants of equation (6.1), we find that the parameter s is imaginary and,
therefore, there is no parametric gain. Gain is obtained by adjusting the two-photon
detuning δω2 of the pump and coupling lasers (figure 1) so as to set ∆k = 0 at band
centre.

7. Phase matching

One may show that, for two-photon detunings δω2, which are small compared to
dc|Ec|2, |ρ11| = |ρ22| = −ρ12 = 0.5, and the spatially varying phase δkz of ρ12 is

δk = − 1
2(k(0)

p + k(0)
c )

δω2

dc|Ec|2 . (7.1)

Here, the quantities k(0)
p = ηp~ωpNap and k(0)

c = ηc~ωcNdc are the k vectors (relative
to vacuum) of the fields at frequencies ωp and ωc if all of the atoms are in state |1〉
or state |2〉, respectively. Because these quantities are very large as compared to
the non-resonant aq and dq evaluated at the signal and idler frequencies, only small
detunings (typically under a GHz) of δω2 are necessary to attain phase matching.

8. Pb vapour frequency converter

We have recently reported experimental results for a near-maximum coherence
frequency up-conversion experiment in Pb vapour (Jain et al. 1996). The experimen-
tal setup for this work was similar to that of Jain et al. (1995) and Kasapi et al.
(1995). As shown in figure 2a, the coherence is established by a 406 nm coupling
laser and a 283 nm probe laser. The laser to be up-converted, ωl, has a wavelength of
425 nm. These wavelengths are obtained by frequency doubling or frequency tripling
the output of a single longitudinal mode, injection seeded, Ti : sapphire laser system.
The pulse durations of the probe, coupling and 425 nm laser pulses are 22, 39 and
26 ns, respectively. The generated wavelength is at 293 nm and has a pulse length of
21 ns. The detuning of the 293 nm beam from state |3〉 (figure 1) is 1112 cm−1.
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Figure 6. (Left) Conversion efficiency versus 425 nm intensity. The conversion efficiency is con-
stant at ca. 40%. For this data, N = 4.9× 1015 ± 20% atoms cm−3, γ−1

21 = 28 ns, and the probe
and coupling laser intensities are 12 and 30 MW cm−2, respectively.
Figure 7. (Right) Conversion efficiency versus coupling laser intensity. For this data, N =
3.7× 1015 ± 20% atoms cm−3, γ−1

21 ∼ 20 ns, and the probe and 425 nm intensities are 11 and
1.9 MW cm−2, respectively.

The experiment was done with 99.97% isotopically pure lead vapour (208Pb). This
expensive isotope was used in order to avoid hyperfine structure. The probe and
coupling lasers had opposite circular polarizations, thereby creating an ideal three
state system. The fused-silica sidearm cell was 25.4 cm and was operated at a typical
atom density of 5× 1015 atoms cm−3. This density was measured as in Kasapi et al.
(1996). At our operating atomic density × length product, a resonant, weak-probe
laser alone would see an absorption-length product of αL = 3×105 and a transmission
of exp(−αL). At this operating density, the dephasing time of the |1〉−|2〉 transition
was about 28 ns and, because of out-gassing of the silica cell, varied by about a factor
of two.

The data for this experiment was collected by fast photodetectors connected to
a 5 Gsample/s Textronix TDS 684A four-channel, real-time, digitizing oscilloscope.
The data shown in figures 6 and 7 are from individual pulses with no averaging,
while the data for figure 8 are averaged over 30 shots.

We define the term ‘conversion efficiency’ as the ratio of the generated power
density at 293 nm to the input power density at 425 nm in the spatially and temporally
overlapped portions of the beams. The conversion efficiency if the power densities of
all of the laser beams are included is about 0.5%.

Figure 6 shows the conversion efficiency from 425 to 293 nm as a function of the
425 nm intensity. The intensities of the probe and coupling lasers for this data are
12 and 30 MW cm−2, respectively. As expected from equation (6.6), the conversion
efficiency is constant at ca. 40%, as the 425 nm intensity is varied over about two
orders of magnitude.

In figure 7, we show the conversion efficiency as a function of the coupling laser
intensity. For these data, the intensities of the probe and 425 nm lasers are 11 and
1.9 MW cm−2, respectively, and the cell density is N = 3.7×1015 atoms cm−3. As the
coupling laser intensity is increased, the conversion efficiency first improves linearly
and then reaches a maximum value of about 39%. In the linear region, the energy
density of the coupling laser is not sufficient to satisfy the atom preparation condition
of equation (3.1).

In figure 8, we show the conversion efficiency as a function of small detunings from
the two-photon resonance. The two-photon detuning is precisely controlled by very
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Figure 8. Conversion efficiency versus two-photon detuning. For this data, N = 4.9×1015±20%
atoms cm−3, γ−1

21 = 14 ns, Ip = 13, Ic = 22 and Ie = 2.8 MW cm−2. The maximum conversion
efficiency is ca. 20%.

small changes in the frequency of the probe laser. At exact two-photon resonance
(determined by maximizing the EIT effect for a weak probe beam), the conversion
efficiency is about 10%. At a two-photon detuning of ca. −0.5 GHz, we achieve a
conversion efficiency of ca. 20%. As noted in equation (7.1), small detunings from
two-photon resonance affect the phase of the probe and coupling lasers, thereby
allowing compensation for a small phase mismatch.

9. Parametric gain and spontaneous emission

Figure 1b is an energy level schematic for an optical parametric oscillator which is
pumped by population trapped atoms. The degenerate frequency is ωs = ωi = 1

2(ω2−
ω1). In Pb vapour, the pumping fields at ωp and ωc are the same as for the frequency
converter of the previous section; but here, at a sufficient atom density × length
product and for sufficient pumping intensity, there is parametric gain over much of
the infrared and far-infrared spectrum.

To illustrate the possibilities for this type of device we assume a cell length of
25 cm and an atom density of 5× 1016 atoms cm−3. (This density is about ten times
larger than we are now able to obtain using the fused quartz sidearm cell, but could
be obtained by using a heat pipe.) We choose power densities at ωp and ωc so as
to equalize the Rabi frequencies of these fields. Taking the power density at ωp as
100 MW cm−2, and that at ωc as 32.7 MW cm−2, the Rabi frequencies are Ωp = Ωc =
9.17 cm−1.

Figure 9 shows the parametric (power) gain as a function of frequency. Here, δω2
is chosen so as to set ∆k = 0 at line centre and is not varied as the signal frequency
varies. The gain peaks at the degenerate frequency of 1

2(ω2 − ω1) = 5325 cm−1, and
remains within 50% of its maximum over a bandwidth of 7560 cm−1. To attain phase
matching at line centre requires a two-photon detuning of −110 MHz. (For detunings
which are within the rotating wave approximation, this value is independent of the
common detuning of the pump and coupling laser from state |3〉.)

It should be noted that the gain of figure 9 may, instead, be interpreted (see equa-
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Figure 9. Parametric gain versus normalized signal frequency. For Pb vapour, the gain maxi-
mizes at 1.88 µm and has a bandwidth of about 7500 cm−1.
Figure 10. Power gain versus two-photon detuning. For this figure, the atom density is
N = 5× 1016 atoms cm−3 and the cell length is L = 2.5 m.

tion (6.11)) as the photon conversion efficiency from the signal to the idler. Therefore,
if one used a conventional optical parametric oscillator to generate radiation in the
0.94–1.88 µm spectral region, the Pb cell, acting as a frequency down-converter, and
with fixed δω2, would generate radiation which is tunable from 1.88 µ to nearly d.c.

Figure 10 shows the importance of the ability to adjust the quantity δk of equa-
tion (6.10). If δω2 = δk = 0, there is no parametric gain. A small (ca. 0.11 GHz)
and fixed detuning of either the pump or coupling laser is sufficient to establish the
broadband gain of figure 9.

We also note that even when the loss in the path of the signal and idler frequencies
exceeds the gain, the parametric spontaneous emission at these frequencies will still
be present and will vary as the square of the number density × length product,
and linearly with the amplifier bandwidth (Harris et al. 1967; Byer & Harris 1968).
This emission will peak in the forward direction, and does not require a population
inversion between states |1〉 and |2〉.

10. Summary

We have described frequency conversion and optical parametric gain processes
which are pumped by an anti-phased ensemble of population trapped atoms. The
atoms are driven, using electromagnetically induced transparency, by near-resonance
lasers. The relative phase of the atoms, as a function of distance, is controlled by a
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small detuning from two-photon resonance. When the |ρ12| = 1
2 , the nonlinear and

linear susceptibilities both have a single non-resonant denominator and are of the
same order of magnitude. This results in frequency converters, parametric amplifiers
and sources of spontaneous photons which have bandwidths which may be of the
order of their centre frequencies.

The many contributions of Athos Kasapi to the development of the laser system, and to the
first experiments in Pb vapour (Kasapi et al. 1995) are gratefully acknowledged. We also thank
Zen-Fei Luo and Alexei Sokolov for their contributions and helpful discussions. This work was
supported by the US Air Force Office of Scientific Research, the US Army Research Office and
the US Office of Naval Research.
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